
(Q)SAR Model Reporting Format (QMRF) 

(version 2.1) 
 

The adequacy of a prediction depends on the following conditions: a) the (Q)SAR model is 

scientifically valid: the scientific validity is established according to the OECD principles for 

(Q)SAR validation; b) the (Q)SAR model is applicable to the query chemical: a (Q)SAR is 

applicable if the query chemical falls within the defined applicability domain of the model; c) 

the (Q)SAR result is reliable: a valid (Q)SAR that is applied to a chemical falling within its 

applicability domain provides a reliable result; d) the (Q)SAR model is relevant for the 

regulatory purpose: the predicted endpoint can be used directly or following an extrapolation, 

possibly in combination with other information, for a particular regulatory purpose.  

 

 

1. QSAR identifier 

1.1 QSAR identifier (title): 

ACD/Ames Mutagenicity: QSAR for genotoxicity in Salmonella typhimurium 

1.2 Other related models:  

ACD/Labs Percepta Impurity Profiling Suite, including probabilistic models for 21 

different endpoints related to: 

• Genetic toxicity: Mutagenicity (Ames test, Mouse Lymphoma Assay, 

CHO/CHL all loci composite, and other standard assays), Clastogenicity 

(Micronucleus test, Chromosomal Aberrations), DNA damage (Unscheduled 

DNA Synthesis) 

• Carcinogenicity (rodent carcinogenicity) 

• Reproductive toxicity: Endocrine disruption mechanisms (estrogen receptor 

binding) 

1.3 Software coding the model:  

ACD/Labs Percepta v. 2025.1 

https://www.acdlabs.com/products/percepta-platform/ 

 

2. General information 

2.1 Date of QMRF: 

26 March 2018 

2.2 QMRF author(s) and contact details:  

Simona Kovarich1, Kiril Lanevskij2,*, Andrius Sazonovas2,**. 
1 S-IN Soluzioni Informatiche Srl Via G. Ferrari, 14, I-36100 Vicenza, Italy. 
2 Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, 

Ontario, Canada, M5C 1B5. 
* Contact email: kiril.lanevskij@acdlabs.com 

** Contact email: andrius.sazonovas@acdlabs.com 

2.3 Date of QMRF update(s):  

1) 14 August 2024 

2) 11 June 2025 

https://www.acdlabs.com/products/percepta-platform/
mailto:kiril.lanevskij@acdlabs.com
mailto:andrius.sazonovas@acdlabs.com
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2.4 QMRF update(s):  

1) Authors of the update: Kiril Lanevskij, Andrius Sazonovas (see section 2.2). 

Content updates: extensive editing of the entire document, reformatting to a new 

template, updated metadata. Rewritten sections 4.1-4.7, 5.1-5.2, 6.6, 6.12, 7.9. 

2) Authors of the update: Kiril Lanevskij, Andrius Sazonovas (see section 2.2). 

Updated sections: 1.3, 2.2-2.6, 5.3, 7.9. 

2.5 Model developer(s) and contact details:  

Advanced Chemistry Development, Inc. 8 King Street East, Suite 107, Toronto, Ontario, 

Canada, M5C 1B5; info@acdlabs.com 

2.6 Date of model development and/or publication: 

2011-2025 

2.7 Reference(s) to main scientific papers and/or software package 

[1] Sazonovas A, Japertas P, Didziapetris R. Estimation of reliability of predictions and 

model applicability domain evaluation in the analysis of acute toxicity (LD50). SAR 

QSAR Environ Res. 2010 Jan 1;21(1):127-48. 

http://www.ncbi.nlm.nih.gov/pubmed/20373217  

[2] Japertas P, Lanevskij K, Juska L, Dapkunas J, Didziapetris R. A comprehensive 

approach for in silico risk assessment of impurities and degradants in drug products. 

Toxicol Lett. 2011, 205, S95. 

[3] Lanevskij K, Juska L, Dapkunas J, Sazonovas A, Japertas P, Didziapetris R. An In 

Silico Test Battery for Rapid Evaluation of Genotoxic and Carcinogenic Potential of 

Chemicals. Poster (Mar 25, 2012, ACS Spring). 

2.8 Availability of information about the model: 

The model is proprietary, however the algorithm was published in [1], while the details 

relevant to predicting genotoxicity were provided in [2-3]. The compounds used to 

derive the model and their experimental data are available within the corresponding 

software product 

2.9 Availability of another QMRF for exactly the same model: 

None to date 

 

3. Defining the endpoint - OECD Principle 1: “A DEFINED ENDPOINT" 

3.1 Species:  

Salmonella typhimurium 

3.2 Endpoint:  

Mutagenicity: OECD 471 Bacterial Reverse Mutation Test 

3.3 Comment on endpoint:  

Mutagenicity assessment based on bacterial reverse mutation test using different strains 

of Salmonella typhimurium. 

3.4 Endpoint units:  

Dimensionless 

3.5 Dependent variable:  

Mutagenicity as microbial in vitro Salmonella (composite) gene mutation assay is 

modelled for study calls, where the positive calls are trained as binary 1 and negative 

calls as binary 0. The output of the probabilistic QSAR model consists of: the probability 

mailto:info@acdlabs.com
http://www.ncbi.nlm.nih.gov/pubmed/20373217
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that a compound will result in a positive test in the respective assay (“p-value”); an 

indication of whether the compound belongs to the model applicability domain 

according to the calculated RI value; and a “positive” or “negative” call if the compound 

can be reliably classified on the basis of p and RI values (“Undefined”) otherwise. 

3.6 Experimental protocol:  

Experimental dataset was obtained from FDA. Data was collected from EPA GENE-

TOX database and scientific literature [4]. For modeling purposes experimental results 

of microbial in vitro Salmonella (composite) Assay have been transformed into a binary 

variable, i.e. positive/negative. 

3.7 Endpoint data quality and variability:  

No information available 

 

4. Defining the algorithm - OECD Principle 2: “AN UNAMBIGUOUS ALGORITHM” 

4.1 Type of model 

Hybrid QSAR, combining a linear baseline model utilizing PLS method and the local 

similarity-based corrections 

4.2 Explicit algorithm 

Probabilistic GALAS algorithm (Global linear baseline QSAR + local similarity-based 

corrections) 

GALAS (Global, Adjusted Locally According to Similarity) models consist of two parts: (1) a 

global linear model, and (2) local corrections based on the analysis of global model performance 

for the most similar compounds from the training set. Experimental values for microbial in vitro 

Salmonella assay are used during the local part of the modeling to yield final GALAS model. 

The global QSAR was developed using binomial PLS in combination with bootstrapping 

technique. This method implies random compound sampling from the initial training set, i.e. 

generation of new “training sub-sets”. Each of the sampled sub-sets is of the same size as the 

initial training set, however, random manner of their population results in some compounds 

being selected more than once, others being omitted. This procedure is performed 100 times 

and an independent PLS model is derived for every sub-set. Each of those PLS models is based 

on 2D fragmental descriptors: 

 

logit(p)  = Σi ai ∙ fi + c 

 

where fi is the number of occurrences of the i-th fragment in a molecule, ai – its statistical 

coefficient, and c – the intercept. 

 

As a result, each global QSAR model actually represents an ensemble of 100 PLS models, 

providing each compound with a vector of 100 logit-transformed probability predictions 

(ln (p/(1 – p))), each based on a slightly different sub-set of the initial training set. It is defined 

that two compounds with similar trends in the variation patterns of the 100 value vectors 

predicted by a global QSAR model are considered similar in terms of the analyzed property, 

i.e. the differences in the compound sets used to parameterize each of 100 PLS models, 

constituting a baseline model, affect estimations for the two compounds in a similar way. The 

correlation coefficient of the two vectors is called an Individual Similarity Index between two 

compounds (SIi). An analogous definition of the “property-specific” or dynamic similarity was 

first used by Tetko and his co-workers [5-9] and this method has been recently used in the 

analysis of the acute toxicity data [10]. With the available robust similarity measure, it becomes 



 4 

possible to analyze the performance of the baseline QSAR model in the local chemical 

environment of a query molecule represented by the most similar compounds in the training 

set. In case any systematic errors are encountered for sufficiently similar compounds, a local 

correction (Δ) is calculated. Later on it is possible to train the model quickly and efficiently 

using new experimental data by just adding it to this second similarity correction calculation 

procedure, without the time costly baseline model re-training. 

4.3 Descriptors in the model 

Fragmental descriptors (occurrence counts) – a fixed set of fragmental descriptors, based 

on the expanded list of Platt's type fragments (see [11]). The fragments included in this list 

reflect (i) molecular size and topology (linear and branched atom chains, cycles of different 

sizes, etc.), (ii) aromaticity, (iii) presence of various functional groups, (iv) intramolecular 

interactions, (v) substructures typical for specific drug classes. This initial set was expanded 

with a group of more complex fragments, generally called toxicophores, i.e., substructures 

identified to be responsible for the toxic action of the molecules possessing them. Overall, 

404 fragmental descriptors were used for the development of the baseline model. 

4.4 Descriptor selection 

No special descriptor selection techniques had been used to reduce the initial descriptor 

pool (e.g., excluding statistically insignificant or intercorrelated variables) due to the 

specifics of employed modeling methodology. Any potential negative influence of 

insignificant fragments would be remedied by the use of PLS method, but their presence is 

necessary for providing the so called "dynamic similarity" measure between the molecules. 

For this purpose, even “blank” fragments (with zero occurrence count) should remain, as 

these would allow detecting new structural features of a query molecule that were not 

present in the training set, and would thus decrease its similarity coefficient to training set 

molecules. 

4.5 Algorithm and descriptor generation 

The generation of the descriptor matrix following the outlined approach constituted 

counting the occurrences of any of the pre-defined fragments in the training set molecules. 

This procedure as well as all the subsequent statistical analysis were performed using 

Algorithm Builder software. 

4.6 Software name and version for descriptor generation 

ACD/Labs Algorithm Builder 1.8 

ACD/Labs, Inc. 8 King Street East, Suite 107, Toronto, Ontario, M5C 1B5 Canada. 

info@acdlabs.com  

4.7 Chemicals/Descriptors ratio 

Not relevant as PLS method operates on a small number of latent principal components rather 

than raw descriptors 

 

5. Defining the applicability domain - OECD Principle 3: “A DEFINED DOMAIN OF 

APPLICABILITY” 

5.1 Description of the applicability domain of the model 

Applicability domain of the model is defined based on the training set compounds. This 

procedure takes into account the following two aspects: 

• Similarity of the tested compound to the training set. No reliable predictions can be 

made if there are no similar compounds in the training set 

mailto:info@acdlabs.com
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• Consistence of the experimental values with regard to the baseline model for similar 

compounds. Even if there are similar compounds in the dataset, the quality of prediction 

could be lower if that data cannot be reproduced by the baseline model. It does not 

matter what the reason for this inconsistency – experimental variability or sudden 

change in mechanism of action because of slight structural changes – in any case it 

indicates possible problems when trying to give accurate predictions. 

5.2 Method used to assess the applicability domain: 

The two aspects mentioned in Section 5.1 receive their quantitative assessment in terms of 

Similarity Index (SI) and Data-Model Consistency Index (DMCI). The SI, evaluating how 

distant the query structure is from the whole training set, is calculated by weighted averaging 

of all the individual Similarity Indices (SIi) for the test molecule and each of the 5 most similar 

compounds from the training set. DMCI is calculated by comparing the differences between 

experimental and global QSAR predicted values for the 5 most similar compounds and the 

suggested similarity correction value (Δ) for the test compound, calculated by averaging these 

differences. The more individual differences are scattered around the calculated average (Δ), 

the more inconsistent are the data for the similar compounds with regards to the global QSAR. 

The final prediction Reliability Index is calculated as a product of the aforementioned two 

indices: 

 

RI = SI ∙ DMCI 

 

Both SI and DMCI are scaled to vary from 0 to 1, so the resulting RI also varies in this range. 

Lower values suggest a compound being further from the Model Applicability Domain and the 

prediction less reliable (low SI or low DMCI either alone or in combination can be the reason). 

On the other hand, high RI values indicate an increasing confidence about the quality of the 

prediction (both SI and DMCI must be high to yield such a result). 

5.3 Software name and version for applicability domain assessment: 

ACD/Labs Percepta v. 2025.1 

5.4 Limits of applicability: 

For the purpose of applicability domain assessment, Reliability Index (RI) values of predictions 

are categorized as follows: 

• RI < 0.3: unreliable predictions 

• 0.3 ≤ RI < 0.5: borderline reliability of predictions 

• 0.5 ≤ RI < 0.75: moderate reliability of predictions 

• RI ≥ 0.75: high reliability of predictions 

 

6. Defining goodness-of-fit and robustness (internal validation) – OECD Principle 4: 

“APPROPRIATE MEASURES OF GOODNESS-OF-FIT, ROBUSTENESS AND 

PREDICTIVITY” 

6.1 Availability of the training set 

The training data is available through ACD/Labs Percepta software (Genotoxicity module).  

6.2 Available information for the training set 

The training set is not attached to the QMRF itself 

6.3 Data for each descriptor variable for the training set 

Not available 
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6.4 Data for the dependent variable for the training set 

Not available 

6.5 Other information about the training set 

The entire dataset used in model development and validation consists of 7826 compounds, 

including 3875 positive compounds (i.e. 49.5%). 

6.6 Pre-processing of data before modelling 

Inorganic compounds have been excluded. All provided statistical information corresponds to 

the final filtered data set 

6.7 Statistics for goodness-of-fit 

Sensitivity = 85.6%; Specificity = 81.5%; Concordance = 83.6% 

6.8 Robustness - Statistics obtained by leave-one-out cross-validation 

Not available 

6.9 Robustness - Statistics obtained by leave-many-out cross-validation 

Not available 

6.10 Robustness - Statistics obtained by Y-scrambling 

Not available 

6.11 Robustness - Statistics obtained by bootstrap 

Not available 

6.12 Robustness - Statistics obtained by other methods 

Cross-validation or any other robustness determination procedures were not applied to the 

reported model since its performance was evaluated using an external validation set. External 

predictivity always prevails over any internal validation results, whereas consistency between 

prediction statistics obtained on training and test sets provides sufficient evidence for the robust 

performance of the model. 

 

7. Defining predictivity (external validation) – OECD Principle 4: “APPROPRIATE 

MEASURES OF GOODNESS-OF-FIT, ROBUSTENESS AND PREDICTIVITY” 

7.1 Availability of the external validation set 

The external validation data is available through ACD/Labs Percepta software (Genotoxicity 

module).  

7.2 Available information for the external validation set 

The external validation set is not attached to the QMRF itself 

7.3 Data for each descriptor variable for the external validation set 

Not available 

7.4 Data for the dependent variable for the external validation set 

Not available 

7.5 Other information about the external validation set 

The part of the dataset used for model validation consists of 1577 compounds, including 794 

positive compounds (i.e. 50.3%). 

7.6 Experimental design of test set 

Random splitting of the initial dataset into the training and validation sets at ~80%:20% ratio. 

7.7 Predictivity - Statistics obtained by external validation 

Sensitivity = 87.1%; Specificity = 81.7%; Concordance = 84.6 
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Only chemicals inside the Applicability Domain (i.e., RI≥0.3) were considered for the 

calculation of statistical performances (1332 compounds, i.e., 84.5% of the entire test set). 

7.8 Predictivity - Assessment of the external validation set 

Compounds with unreliable predictions (RI<0.3) were excluded from considerations, as by 

definition they fall outside of the model AD and hence provide no meaningful information about 

the models’ performance. 

7.9 Comments on the external validation of the model 

The training and validation statistics reported in Sections 6-7 apply to the original model 

developed using the data set characterized in Section 6.5. The current version of the software 

uses the same baseline statistical model operating on a significantly expanded built-in self-

training library for similarity corrections (“AMES Test v. 1.5”, containing 10967 molecules). 

 

8. Providing a mechanistic interpretation - OECD Principle 5: “A MECHANISTIC 

INTERPRETATION, IF POSSIBLE” 

8.1 Mechanistic basis of the model 

The model is based on both fragmental structural descriptors and toxicophores, i.e. 

substructures identified to be responsible for the toxic action of the molecules possessing them. 

To enhance a mechanistic understanding, predictions obtained by the probabilistic model can 

be combined with and supported by the Genotoxicity Hazard System, which is a knowledge-

based expert system that identifies structural fragments that may be responsible for the 

mutagenic activity of the analyzed molecules. 

8.2 A priori or a posteriori mechanistic interpretation 

A priori (see section 8.1) 

8.3 Other information about the mechanistic interpretation 

The software displays up to 5 most similar structures (included in the training set of the model) 

to the analyzed molecule with experimental results (positive/negative). The analysis of similar 

structures provides additional information to gain insight into the possible mechanisms of 

action and support the in silico prediction for the query compound. 

 

9. Miscellaneous information 

9.1 Comments 

ACD/Labs Impurity Profiling Suite provides a battery of in silico tests to accurately assess the 

genotoxic and carcinogenic potential of impurities and degradants. The impurities package 

offers probabilistic predictive models for 21 different endpoints that cover various mechanisms 

of hazardous activity (including Mutagenicity, Clastogenicity, DNA damage mechanisms, 

Carcinogenicity and Endocrine Disruption mechanisms). These predictors are supplemented 

with a knowledge-based expert system that identifies potentially hazardous structural fragments 

that could be responsible for genotoxic and/or carcinogenic activity of the compound of interest. 

The expert system was able to recognize >94% of mutagens in ACD/Ames test database, and 

>90% of compounds marked as potent carcinogens in the FDA's OFAS Food-Additive 

Knowledgebase [3]. 
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