CYP1A2 Regioselectivity

From ACD Percepta
Revision as of 12:56, 23 May 2012 by Kristina (talk | contribs) (Created page with "==Overview== <br /> The information about possible metabolites of a drug candidate is desirable in the earliest stages of drug development, but the experimental testing of bi...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Overview


The information about possible metabolites of a drug candidate is desirable in the earliest stages of drug development, but the experimental testing of biotransformations is usually done only in the later phases. The P450 regioselectivity module of ACD/Percepta predicts possible sites of metabolic reactions taking place in human liver microsomes (HLM) and catalyzed by 5 individual cytochrome P450 enzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4). The predictive models are based on experimental data for >900 compounds. Metabolites that are formed when incubating the compound with human liver microsomes and recombinant enzymes were considered. Separate probabilistic models were built for 5 different reaction types: aliphatic and aromatic hydroxylation, N-dealkylation, O-dealkylation and S-oxidation.

Six separate regioselectivity modules are provided. "Human Liver Microsomes" module identifies all probable sites of human liver microsomal metabolism in the molecule while the other modules predict regioselectivity of the reactions catalyzed by individual enzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4).

Features

  • Predicts possibility of being a metabolism site for every atom in the molecule
  • Calculates a Reliability Index for every prediction
  • Illustrates the predictions in a color-coded manner
  • Performs a similarity search and displays top 5 most similar structures from the training set of the model along with their names and experimental results


Interface


File:cyp1a2 regioselectivity.png


  1. Predictions are performed for all possible metabolism sites in the molecule and atoms are colored according to predicted values: intensive red corresponds to probability > 0.8; light red – probability in the range 0.6-0.8. Green color indicates non-metabolized atoms (intensive green – probability < 0.2, light green – probability in the range 0.2-0.4), while inconclusive predictions (probability in the range 0.4-0.6) are marked gray.
  2. Atom with the highest predicted score of metabolism is automatically selected and marked with a circle. Other atoms can be selected by clicking on them or by clicking on the corresponding entry in the table in the right
  3. Table entry corresponding to currently selected atom is highlighted
  4. Type of metabolic reaction taking place at the particular site
  5. Calculated score for an atom to be a metabolism site
  6. Calculated value of Reliability Index (RI) supporting the prediction
  7. Prediction for the currently selected atom is outlined on the top of Similar Structures Pane
  8. Five most similar atoms from the training set are displayed along with experimentally assigned classes and Similarity Indices to the selected atom. Similar atoms are color-marked according to experimental data (red – experimentally determined site of metabolism, green – no metabolism observed, grey - inconclusive data).



Technical information