
 

1.1.QSAR identifier (title):

ACD/Percepta QSAR for the intrinsic solubility of organic compounds

   in water (log S0)

1.2.Other related models:

ACD/Percepta QSAR for the solubility of organic compounds in pure

   water (log Sw). (It should be noted that references reported in section

   2.7 are referred to this QSAR model)

1.3.Software coding the model:

ACD/Percepta 2016

ACD/Labs, Inc. 110 Yonge Street, 14th floor, Toronto, Ontario, Canada M5C 1T4

http://acdlabs.com/products/percepta/

 

2.1.Date of QMRF:

October 2017

2.2.QMRF author(s) and contact details:

[1]Andrius Sazonovas ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone:

+370 5 262 40 32; fax: +370 5 262 37 28 andrius.sazonovas@acdlabs.com http://www.acdlabs.com

[2]Pranas Japertas ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone: +370

5 262 40 32; fax: +370 5 262 37 28 pranas.japertas@acdlabs.com http://www.acdlabs.com

[3]Remigijus Didziapetris ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone:

+370 5 262 40 32; fax: +370 5 262 37 28 remigijus.didziapetris@acdlabs.com

http://www.acdlabs.com

[4]Kiril Lanevskij ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone: +370 5

262 40 32; fax: +370 5 262 37 28 kiril.lanevskij@acdlabs.com http://www.acdlabs.com

[5]Justas Dapkunas ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone: +370

5 262 40 32; fax: +370 5 262 37 28 justas.dapkunas@acdlabs.com http://www.acdlabs.com

[6]Simona Kovarich S-IN Soluzioni Informatiche Srl Via G. Ferrari, 14, I-36100 Vicenza (Italy)

simona.kovarich@s-in.it www.s-in.it 

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

2.5.Model developer(s) and contact details:

ACD/Labs, Inc. A.Mickeviciaus g. 29, LT-08117, Vilnius, Lithuania. Phone: +370 5 262 40 32; fax:

+370 5 262 37 28 vilnius@acdlabs.com http://www.acdlabs.com 

2.6.Date of model development and/or publication:

2012.11.23

2.7.Reference(s) to main scientific papers and/or software package:

[1]Japertas, P., Sazonovas, A., Didziapetris, R., and Petrauskas, A., Similarity based assessment of

model applicability domain and quantitative evaluation of the reliability of the prediction. Abstr.

Paper. Am. Chem. Soc., 2008 , 235, Meeting abstract 271-COMP
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QMRF Title:ACD/Percepta QSAR for the intrinsic solubility of organic compounds
    in water (log S0)
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1.QSAR identifier
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http://oasys2.confex.com/acs/235nm/techprogram/P1160866.HTM

[2]Japertas, P., Sazonovas, A., Didziapetris, R., and Petrauskas, A., Similarity based correction for

the predictions of compounds physicochemical properties. Abstr. Paper. Am. Chem. Soc., 2008,

235, Meeting abstract 247 - MEDI

http://oasys2.confex.com/acs/235nm/techprogram/P1160811.HTM

[3]Japertas, P., Didziapetris, R., and Petrauskas, A., Fragmental methods in the design of new

compounds. Applications of Advanced Algorithm Builder, Quant. Struct-Act. Relat., 2002; 21, 23-37

http://www3.interscience.wiley.com/journal/93521415/abstract 

2.8.Availability of information about the model:

Model is proprietary, however the compounds used to derive the model and

their experimental data are available within the corresponding software

products.

2.9.Availability of another QMRF for exactly the same model:

None to date

 

3.1.Species:

Not applicable

3.2.Endpoint:

QMRF 1. Physical Chemical Properties QMRF 1. 3. Water solubility 

3.3.Comment on endpoint:

The logarithm of a compound intrinsic solubility in water at 25°C.

3.4.Endpoint units:

log(mol/l) or log(mmol/ml)

3.5.Dependent variable:

LogS0

3.6.Experimental protocol:

The dataset used to develop the reported model has been compiled

     from a great number of different sources, including books [4-6] as well

     as various articles from peer-reviewed scientific journals. Articles

     reporting the models of solubility in pure water (LogSw) by other

     authors were the predominant type among analyzed literature, meaning

     that each publication contained larger collections of experimental data

     (usually in the order of tens or hundreds compounds) compiled from

     corresponding original experimental articles. 

In general, the data sources used to collect the data covering a

     wide variety of experimental protocols used to determine log Sw values

     reported within them. This includes the classical yet very

     labor-intensive saturation shake-flask log Sw determination method

     involving lengthy equilibration periods, as well as methods aiming at

     some high-througput needs like turbidimetric method, a reverse-phase

     HPLC based 96-well plate assay adaptation of the shake-flask

     methodology, various potentiometric methods ranging from the standard

     one to one of the latest developments called dissolution template

     titration (DTT), as well as the real high-throughput fast UV plate

     spectrophotomer methods involving aqueous dilution or co-solvent
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     utilization strategies. Estimated detection limits of the listed methods

     range from 1 g/mL down to 5 ng/mL. For a

     comprehensive overview of the experimental log Sw measurement techniques

     please see [7]. 

Original LogSw data had been converted to LogS0 prior to modeling.

3.7.Endpoint data quality and variability:

log Sw is a relatively easily measured property. As a result the

     experimental data quality, which is usually inversely proportional to

     the complexity of the experiment, is reasonably good. Independent

     external studies show that the error between the log Sw measurements

     performed by different laboratories using the same protocol

     (reproducibility) can be expected to be within 0.5 logarithmic units

     [8,9]. The LogSw data is converted to LogS0 data using a set of mass

     balance equations involving the predicted information about the

     distribution of various ionized forms of the compound at a certain pH.

     Since the accuracy of pKa predictions for the conventional structures is

     generally regarded as acceptable, it is assumed that any additional

     errors introduced into the data by this conversion step is negligible. 

The characteristics of the entire dataset compiled for the task of

     this model development is: 

No. of compounds = 6807 

Min. Value = -12.79 

Max. Value = 2.06 

Std. Dev. = 2.13 

Skewness = -0.69

 

4.1.Type of model:

QSAR

4.2.Explicit algorithm:

GALAS algorithm

Global linear baseline QSAR + local similarity based corrections

GALAS (Global, Adjusted Locally According to Similarity) models consist

of two parts: (1) a global linear model, and (2) local corrections based

on the analysis of global model performance for the most similar

compounds from the training set. 

 

The global QSAR was developed using PLS in combination with

bootstrapping technique. This method implies random compound sampling

from the initial training set, i.e. generation of new “training

sub-sets”. Each of the sampled sub-sets is of the same size as the

initial training set, however, random manner of their population results

in some compounds being selected more than once, others being omitted.

This procedure is performed 100 times and an independent PLS model is

derived for every sub-set. 
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Each of those PLS models is based on 2D fragmental descriptors: 

log LC50 = SUM[i=1..n](ai*fi) + c 

where fiis the number of occurences of the i-th fragment in

a molecule, ai- its statistical coefficient, and c -

intercept. 

 

As a result, each global QSAR model actually represents an ensemble of

100 PLS models, providing each compound with a vector of 100 log LC50

predictions, each based on a slightly different sub-set of the initial

training set. It is defined that two compounds with similar trends in

the variation patterns of the 100 value vectors predicted by a global

QSAR model are considered similar in terms of the analyzed property,

i.e. the differences in the compound sets used to parameterize each of

100 PLS models, constituting a baseline model, affect estimations for

the two compounds in a similar way. The correlation coefficient of the

two vectors is called an Individual Similarity Index between two

compouds (SIi). An analogous definition of the

“property-specific” or dynamic similarity was first used by Tetko and

his co-workers [10-14] and this method has been recently used in the

analysis of the acute toxicity and CYP3A4 inhibition data [15-16]. 

With the available robust similarity measure, it becomes possible to

analyse the performance of the baseline QSAR model in the local chemical

environment of a query molecule represented by the most similar

compounds in the training set. In case any systematic errors are

encountered for sufficiently similar compounds, a local correction (Delta)

is calculated. Later on it is possible to train the model quickly and

efficiently using new experimental data by just adding it to this second

similarity correction calculation procedure, without the time costly

baseline model re-training.

4.3.Descriptors in the model:

Fragmental descriptors Dimentionless (occurence count) Fixed set of fragmental descriptors, based

on the expanded list of Platt's type fragments (see [17]). A fixed and relatively small set of fragments

was used due to the specifics of the employed modeling methodology. In order for the correlation

between two compound vectors of log S0 predictions coming from a baseline QSAR model to be

representative of compound similarity in terms of the analyzed property, these vectors have to be

parameterized using exactly the same set of fragmental descriptors. This prevents the use of any

sort of automated fragmentation routines (atom based, isolating carbon based, chain based, etc.)

that result in a dynamic set of fragments depending on the training set structures. They leave the

possibility that for any query structure from outside the training set the same rules will yield certain

new fragments not encountered in the training set molecules which is not compatible with the main

condition just mentioned. On the other hand, it is equally important for the model to be able to

identify any new structural features of a query molecule that were not present in the training set

compounds. I.e., the fixed fragment set cannot be constructed based on the analysis of the training

set either, or in general any molecule set whatsoever. Because in that case any new structural

features not present in that database would be eventually ignored. As a result, the fragmental

descriptor set is based on the general knowledge and considerations regarding all possible chemical



structures rather than a finite dataset and include all the fragments, even those that are not detected

in the training set molecules at all. 

4.4.Descriptor selection:

No special descriptor selection techniques had been used to reduce the

initial descriptor pool (e.g., excluding statistically insignificant or

intercorrelated variables) due to the specifics of employed modeling

methodology. Any potential negative influence of insignificant fragments

would be remedied by the use of PLS method, but their presence is

necessary for providing the so called "dynamic similarity" measure

between the molecules. For this purpose, even “blank” fragments (with

zero occurrence count) should remain, as these would allow detecting new

structural features of a query molecule that were not present in the

training set, and would thus decrease its similarity coefficient to

training set molecules.

4.5.Algorithm and descriptor generation:

The generation of the descriptor matrix following the outlined approach

constituted counting the occurences of any of the pre-defined fragments

in the training set molecules. This procedure as well as all the

subsequent statistical analysis were performed using Algorithm Builder

1.8 software.

4.6.Software name and version for descriptor generation:

Algorithm Builder 1.8

ACD/Labs, Inc. 110 Yonge Street, 14th floor, Toronto, Ontario, Canada M5C 1T4.

http://www.acdlabs.com

4.7.Chemicals/Descriptors ratio:

12.6 (4764 chemical in the training set, 379 descriptors).

 

5.1.Description of the applicability domain of the model:

Applicability domain of the model is defined based on the training set

compounds. This procedure takes into account the following two aspects: 

* Similarity of the tested compound to the training set. No reliable

predictions can be made if we have no similar compounds in the training

set; 

* Consistence of the experimental values with regard to the baseline

model for similar compounds. Even if we do have similar compounds in the

dataset the quality of prediction could be lower if that data cannot be

reproduced by the baseline model. It does not matter what the reason for

this inconsistency – experimental variability or sudden change in

mechanism of action because of slight structural changes – in any case

it indicates possible problems when trying to give accurate predictions.

5.2.Method used to assess the applicability domain:

The two aspects mentioned in Section 5.1 receive their quantitative

assessment in terms of Similarity Index (SI) and Data-Model Consistency

Index (DMCI). The SI, evaluating how distant the query structure is from

the whole training set, is calculated by weighted averaging of all the
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individual Similarity Indices (SIi) for the test molecule and

each of the 5 most similar compounds from the training set. DMCI is

calculated by comparing the differences between experimental and global

QSAR predicted values for the 5 most similar compounds and the suggested

similarity correction value (Delta) for the test compound,

calculated by averaging these differences. The more individual

differences are scattered around the calculated average (Delta),

the more inconsistent are the data for the similar compounds with

regards to the global QSAR model. 

 

The final prediction Reliability Index is calculated as a product of the

aforementioned two indices: 

 

RI = SI * DMCI 

 

Both SI and DMCI are scaled to vary from 0 to 1, so the resulting RI

also varies in this range. Lower values suggest a compound being further

from the Model Applicability Domain and the prediction less reliable

(low SI or low DMCI either alone or in combination can be the reason).

On the other hand, high RI values indicate an increasing confidence

about the quality of the prediction (both SI and DMCI have to be high to

yield such a result).

5.3.Software name and version for applicability domain assessment:

ACD/Percepta

ACD/Labs, Inc. 110 Yonge Street, 14th floor, Toronto, Ontario, Canada M5C 1T4

http://acdlabs.com/products/percepta/

5.4.Limits of applicability:

Reliability Index < 0.3: NOT reliable predictions 

Reliability Index in the range 0.3-0.5: borderline reliability of

     prediction 

Reliability Index in the range 0.5-0.75: moderate reliability of

     prediction 

Reliability Index >0.75: high reliability of prediction

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

The training set is available through the software products listed here, but is not attached to the form

itself

CAS RN: No

Chemical Name: No

Smiles: No

Formula: No

INChI: No

MOL file: No
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6.3.Data for each descriptor variable for the training set:

No

6.4.Data for the dependent variable for the training set:

No

6.5.Other information about the training set:

The statistics of the training set data: 

No. of compounds = 4764 

Min. Value = -12.04 

Max. Value = 2.00 

Std. Dev. = 2.14 

Skewness = -0.71 

6.6.Pre-processing of data before modelling:

Inorganic compounds have been excluded.

6.7.Statistics for goodness-of-fit:

Statistics provided for the fraction of the training set that

     falls within the applicability domain of the model (RI > 0.3 - see

     Section 5.4) 

N RI>0.3 = 4651 (i.e. 97.6% of the training set

     compounds) 

R 2 = 0.846 

MAE = 0.622 

RMSE = 0.842 

F =   25489.1 (Fisher's F-statistics)

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

N/A

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

N/A

6.10.Robustness - Statistics obtained by Y-scrambling:

N/A

6.11.Robustness - Statistics obtained by bootstrap:

N/A

6.12.Robustness - Statistics obtained by other methods:

N/A

 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

The validation set is available through the software products listed here, but is not attached to the

form itself

CAS RN: No

Chemical Name: No

Smiles: No

Formula: No

INChI: No

MOL file: No

7.External validation - OECD Principle 4



7.3.Data for each descriptor variable for the external validation set:

No

7.4.Data for the dependent variable for the external validation set:

No

7.5.Other information about the external validation set:

The statistics of the validation set data: 

No. of compounds = 2043 

Min. Value = -12.79 

Max. Value = 2.06 

Std. Dev. = 2.11 

Skewness = -0.65

7.6.Experimental design of test set:

Random splitting of the initial dataset into the training and validation

sets at ~70%:30% ratio.

7.7.Predictivity - Statistics obtained by external validation:

Statistics provided for the fraction of the validation set that

     falls within the applicability domain of the model (RI > 0.3 - see

     Section 5.4) 

N RI>0.3 = 2002 (i.e. 98.0% of all the validation

     set compounds) 

R 2 = 0.846; MAE = 0.611; RMSE = 0.829; F = 10962.0

     (Fisher's F-statistics) 

Analysis of the subsets of the higher quality results: 

N RI>0.5 = 1737 (i.e. 85.0% of all the validation

     set compounds) 

R 2 = 0.867; MAE = 0.564; RMSE = 0.769; F = 11267.5

     (Fisher's F-statistics) 

N RI>0.75 = 612 (i.e. 30.0% of all the validation

     set compounds) 

R 2 = 0.927; MAE = 0.429; RMSE = 0.586;F = 7768.7

     (Fisher's F-statistics)

7.8.Predictivity - Assessment of the external validation set:

As can be seen from the results of the Section 7.7, 98% of the

validation set is within the Applicability Domain of the reported model,

and more than 80% of the compounds obtain predictions of moderate and

high reliability.

7.9.Comments on the external validation of the model:

Correlation coefficients and other statistical parameters for the

training and validation set compounds falling within the applicability

domain of the model are in a good agreement.

 

8.1.Mechanistic basis of the model:

The only mechanistic consideration utilized in model building is

     the use of a linear regression method (PLS) and the fragmental

     descriptors. In other words it is assumed that the final predicted value

8.Providing a mechanistic interpretation - OECD Principle 5



     is composed of a linear combination of all the contributions of

     structural moieties making up the test molecule. Although very basic,

     this consideration is one of the most fundamental ones, even the name of

     (Q)SAR methods implies that the main determinant of all the properties

     of a compound is its structure. Quite obviously fragments are the best

     and really firsthand descriptors of a chemical structure.

8.2.A priori or a posteriori mechanistic interpretation:

A posteriori solubility model interpretation based on the

     coefficients of utilized fragmental descriptors is a bit more

     complicated compared to octanol-water partition coefficient models. In

     the latter case the distinction between lipophilicity increasing and

     reducing fragments is pretty straightforward. For example fragments with

     high content of electronegative atoms introducing polar bonds into the

     molecule and thus facilitating its interaction with water phase are

     universally treated as lipophilicity reducing factors. Whereas in case

     of solubility the same considerations sometimes can be misleading and

     some fragments with high electronegative atom content can actually end

     up exhibiting solubility reducing tendencies as well. It is especially

     likely to be true for larger fragments capable of representing possible

     multi-point interactions within the crystal lattice resulting in a

     tighter molecular packing and consequently lower solubility. 

However majority of small heteroatom containing fragments

     (especially permanently charged or ionizable ones) can still be

     considered as solubility enhancing quite safely. And on the other end,

     the effect of carbon-rich non-polar substituents on solubility is as

     invariable as it is in case of log Kow - in this particular case it is

     always a solubility decreasing feature. In this regard the analysis of

     coefficients yields reasonably consistent results. 

The top ten fragmental descriptors with positive coefficients are

     the following: 

Phosphinic amide residue = 0.817; 2,6-dimethyl aromatic amine =

     0.763; Activated aliphatic alcohol (string electron withdrawing group at

     alpha- position) = 0.751; Three-membered heterocycle = 0.741; Hydrazine

     fragment = 0.572; N or S mustard fragment = 0.541; Quaternary ammonium =

     0.536; Any positive permanent charge = 0.531; Sulfonamide fragment =

     0.504; Activated phenol (strong electron withdrawing group at meta-

     position) = 0.485. 

Among the groups with the largest negative impact on solubility,

     the absolute majority of them can be clearly expected to be in this

     group just as it has been discussed at the beginning, e.g.: 

Stereohindrance in the form of two bulk branched aliphatic

     substituents in both orto- positions of a phenolic group = -1.446; 1,3-dimethylcyclobutane

     scaffold = -0.953; n-Nonyl chain = -0.714; Fused 6:6:6 scaffold =

     -0.663; Carbonylguanidine fragment = -0.648; Imide = -0.608; 1,1,2-trimethylcyclopropane

     scaffold = -0.607; Steroid scaffold = -0.579; Fused 6:5:6 scaffold =

     -0.539; 1,2-difluoroethylene fragment = -0.538 



Further similar examples can be established as well.Note: the average of all 379 statistical

coefficients is -0.042

8.3.Other information about the mechanistic interpretation:

N/A

 

9.1.Comments:

Together with the prediction, ACD/Percepta displays up to 5 most

   similar structures from the training set along with experimental results

   and references. The similarity is measured in terms of “property-specific”

   and structural similarity.
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